- Razvi, SS, Feng, S, Narayanan, A, Lee, YT, & Witherell, P. "A Review of Machine Learning Applications in Additive Manufacturing." Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1: 39th Computers and Information in Engineering Conference. Anaheim, California, USA. August 18–21, 2019
- Rezaei-Malek M. et al. A review on optimisation of part quality inspection planning in a multi-stage manufacturing system //International Journal of Production Research. – 2019. – Т. 57. – №. 15-16. – С. 4880-4897.
(https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-abstract/IDETC-CIE2019/1069728)
- Phansak Nerakae, Pichitra Uangpairoj, Kontorn Chamniprasart, Using Machine Vision for Flexible Automatic Assembly System, Procedia Computer Science, Volume 96, 2016, Pages 428-435, ISSN 1877-0509. (http://www.sciencedirect.com/science/article/pii/S1877050916318798)
- Sulaiman, Marizan & Shah, H.N.M. & Harun, Mohamad Haniff & Teck, L.W. & Kazim, M.N.F.. (2013). A 3D gluing defect inspection system using shape-based matching application from two cameras. International Review on Computers and Software. 2013. (https://www.researchgate.net/publication/44385746_Implementation_of_Shape_-_Based_Matching_Vision_System_in_Flexible_Manufacturing_System)
- Partha Deka, Rohit Mittal. Quality inspection in manufacturing using deep learning based computer vision. Dec 18, 2018.
- Filz M. A., Herrmann C., Thiede S. Simulation-based Assessment of Quality Inspection Strategies on Manufacturing Systems //Procedia CIRP. – 2020. – Т. 93. – С. 777-782. (https://www.sciencedirect.com/science/article/pii/S2212827120306752)
- Aminzadeh M., Kurfess T. R. Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images //Journal of Intelligent Manufacturing. – 2019. – Т. 30. – №. 6. – С. 2505-2523. (https://link.springer.com/article/10.1007/s10845-018-1412-0)
- Yang J. et al. Real-time tiny part defect detection system in manufacturing using deep learning //IEEE Access. – 2019. – Т. 7. – С. 89278-89291.
(https://ieeexplore.ieee.org/abstract/document/8750887)
- Sesana M., Moussa A. Collaborative Augmented worker and Artificial Intelligence in Zero defect Manufacturing environment //MATEC Web of Conferences. – EDP Sciences, 2019. – Т. 304. – С. 04003.
(https://www.matec-conferences.org/articles/matecconf/pdf/2019/53/matecconf_easn2019_04003.pdf)